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Abstract 

This paper will focus on aspects of the advanced analysis and underlying behavior of 

composite structures with concrete-filled steel tube (CFT) columns. Through a 

detailed examination of the results of a suite of full-scale slender CFT beam-column 

tests, insight into the cyclic behavior of such members is gained, specifically 

pertaining to local buckling of the steel tube and the plastic hinge length. Modeling 

techniques, which capture these behaviors, are introduced and incorporated into a 

general purpose distributed plasticity fiber based beam element formulation. The 

model is found to be capable of capturing the observed behavior and producing 

accurate results.  

INTRODUCTION  

Advanced analysis models that can faithfully capture the salient features of the 

nonlinear response of a structure are crucial to the assessment of seismic behavior and 

the development of seismic design recommendations. For example, nonlinear analysis 

is central to the FEMA P695 procedure for quantifying seismic performance factors 

(FEMA 2009). Fiber based beam finite elements are well suited to concrete-filled 

steel tube (CFT) frame structures. Such models provide accurate results as well as 

practicality in both model building and computational time. Beam elements 

accurately capture both material and geometric nonlinearity. Fiber cross sections with 

appropriate uniaxial stress strain models naturally span the range from concrete 

dominant to steel dominant members. The calibration and validation of analysis 

models draws on both theory and experimental results to ensure that the underlying 

behavior has been represented in the most appropriate manner.  

In this paper, a set of detailed experiments on full-scale slender CFT beam-columns 

and an analysis model specifically calibrated for CFT members are introduced. Then 

two aspects of behavior are examined in detail with respect to both the experimental 

results and the nonlinear analysis model. Local buckling of the steel tube is examined 

first, followed by the plastic hinge length.  
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FULL-SCALE SLENDER BEAM-COLUMN TESTS 

A series of experiments have been performed on a set of full-scale slender CFT beam-

columns. The specimens in the experimental program were selected to be both 

relatively slender in length and in steel tube width-to-thickness ratio. In total, eighteen 

specimens were tested with variations in steel tube shape and size, length, and 

concrete strength (Table 1).  

Table 1. Experimental Text Matrix 

Note: In this table, D is the diameter of the circular section, B and H are the width and depth of the rectangular section 

respectively, t is the thickness of the steel tube, Fy is the measured yield stress of the steel tube, f´c is the concrete strength at the 

testing day, L is the measured length, R is a slenderness parameter (Figure 3), and εlb/εy is the measured strain at initiation of 

local buckling normalized by the yielding strain.

The tests were conducted at the Multi-Axial Sub-Assemblage Testing (MAST) 

facility at the University of Minnesota. The MAST system (Figure 1) consists of a 

stiff steel crosshead connected to 4 vertical actuators and 2 actuators in both 

horizontal directions, allowing 6 DOF control of the crosshead. Thick plates were 

welded to the ends of the specimens. The bottom plate rigidly connected the specimen 

to the strong floor and the top plate rigidly connected the specimen to the crosshead. 

Through control of crosshead different end conditions could be simulated, most often 

a fixed-free (K=2) condition was enforced.  

The specimens were subjected to a variety of successive load cases. The first load 

case subjected the specimens to concentric axial load. In this load case, most 

specimens were held in a fixed-free (K=2) configuration [specimens 1-C5-18-5 and 

18-C5-26-12 were held in a fixed-fixed (K=1) configuration]. Specifically, lateral 

forces and bending moments at the crosshead were force controlled to zero, while the 

specimen was loaded axially in displacement control until the critical load was 

reached. The twist DOF was held in displacement control to zero. Detailed results 

from this first load case are reported by Perea et al. (2013). 

The second load case subjected the specimens to combined axial compression and 

uniaxial bending. This was achieved with vertical force control at a specified load and 

D  or H B t f' c F y L R εlb / εy

(mm) (mm) (mm) (MPa) (MPa) (mm) (---) (---)

1-C5-18-5 141 --- 3.15 37.9 383 5,499 0.086 14.19

2-C12-18-5 324 --- 5.92 38.6 337 5,499 0.092 n/a

3-C20-18-5 508 --- 5.92 40.0 328 5,525 0.141 5.09

4-Rw-18-5 508 305 7.39 40.7 365 5,537 0.0030 1.64

5-Rs-18-5 508 305 7.39 40.7 365 5,537 0.0065 3.57

6-C12-18-12 324 --- 5.92 91.0 337 5,499 0.092 n/a

7-C20-18-12 508 --- 5.92 91.0 328 5,534 0.141 4.51

8-Rw-18-12 508 305 7.39 91.7 365 5,553 0.0025 1.37

9-Rs-18-12 508 305 7.39 91.7 365 5,553 0.0058 3.16

10-C12-26-5 324 --- 5.92 54.5 335 7,950 0.092 10.74

11-C20-26-5 508 --- 5.92 55.8 305 7,995 0.131 6.61

12-Rw-26-5 508 305 7.39 56.5 406 7,957 0.0026 1.28

13-Rs-26-5 508 305 7.39 57.2 383 7,969 0.0075 3.92

14-C12-26-12 324 --- 5.92 80.0 383 7,963 0.105 8.10

15-C20-26-12 508 --- 5.92 80.0 293 7,976 0.126 6.35

16-Rw-26-12 508 305 7.39 80.7 381 7,957 0.0023 1.21

17-Rs-26-12 508 305 7.39 80.7 380 7,963 0.0062 3.26

18-C5-26-12 141 --- 3.15 80.7 383 7,941 0.086 n/a

Specimen
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displacement control of the lateral DOFs. Again, most specimens were held in a 

fixed-free (K=2) configuration with bending moments at the crosshead were force 

controlled to zero [specimens 1-C5-18-5 and 18-C5-26-12 were held in a fixed-fixed 

(K=1) configuration]. The third load case maintained the same control as the second 

load case, but subjected the specimen to combined axial compression and biaxial 

bending. Detailed results from the second and third load cases are reported by Perea 

et al. (2014). 

 
(a) Specimen 1-C5-18-5 Before Testing 

 
(b) Specimen 1-C5-18-5 During Testing 

Figure 1. Specimen 1-C5-18-5 in the MAST Facility 

Additional latter load cases were conducted, subjecting the specimens to torsion or 

alternate end conditions. Full details of the test program including these load cases 

and discussions on wet concrete effects are presented elsewhere (Perea 2010; Perea et 

al. 2013, 2014). 

MIXED BEAM FINITE ELEMENT FORMULATION 

Frame analyses using distributed plasticity beam elements strike a favorable balance 

of computational efficiency and accuracy. Additionally, mixed formulations (defined 

here as treating both element displacements and stress resultants as primary state 

variables) allow for accurate modeling of both geometric and material nonlinearities. 

Tort and Hajjar (2010b) developed a three-dimensional mixed beam element for the 

analysis of composite frames that include rectangular concrete-filled steel tube 

members. This finite element was adapted and further validated against an additional 

sets of experimental tests on circular concrete-filled steel tube members (Denavit and 

Hajjar 2012).  

The formulation relies on accurate constitutive relations to achieve accurate results. 

Numerous uniaxial constitutive relations have been proposed for composite members 

(e.g., Sakino et al. 2004). Typically, the relations are unique to the member shape 

(circular, rectangular, etc.) because of differences in behavior, namely different 

confinement of the concrete and different susceptibility to local buckling (which is 
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often modeled as a material response). Different models use different assumptions 

and methods of calibration, but they generally strive to mimic the response of short 

concentrically loaded columns.  

As part of the mixed beam formulation, a family of accurate uniaxial cyclic material 

models have been developed and reported by Tort and Hajjar (2010a) for RCFTs and 

Denavit and Hajjar (2012) for CCFTs. The constitutive relation for the concrete core 

is adapted from the rule-based model of Chang and Mander (1994). The tensile 

branch and the cyclic rules were used without changes. However, the compressive 

branch was altered to reflect the state of confinement existing in the composite 

members. The steel model is based on the bounding-surface plasticity model of Shen 

et al. (1995). Several modifications were made to model the behavior of the cold 

formed steel tubes in CFT sections, including modifications to allow for the modeling 

of local buckling as will be discussed in the following section. 

To validate the models, hundreds of comparative analyses were performed (Denavit 

and Hajjar 2012, 2014; Tort and Hajjar 2010a). Sets of experimental data covering a 

wide variety of material properties, geometric properties, and loading configurations 

assembled. The slender beam-column tests described in the previous section were 

included in the validation study.  

LOCAL BUCKLING OF THE STEEL TUBE 

Under compressive stress, the steel tube of a CFT member is susceptible to local 

buckling. Due to the presence of the concrete core, the steel tube only has the ability 

to buckle outward. In a detailed analysis with continuum or shell elements, local 

buckling behavior can be captured explicitly. In frame analyses with beam elements, 

this behavior can only be accounted for implicitly in the material constitutive relation. 

As mentioned in the previous section, the stress-strain constitutive model for steel 

adopted in this work is based on a bounding surface plasticity model. To account for 

local buckling the model is modified to consist of three regions in compression 

(Figure 2). The first region is the unmodified Shen et al. (1995) model, beginning 

with elastic behavior then continuing into plasticity. The second region is commences 

after the initiation of local buckling, which is assumed to be occur when the 

compressive strain reaches a prescribed value, εlb. In this region the response from the 

plasticity model is overridden by linear strength degradation with a prescribed 

modulus, Kslb. The third region is a constant ultimate residual stress, Fulb. Further 

rules and modifications are necessary to properly model the local buckling response 

under cyclic loading (Denavit and Hajjar 2014). 

In the steel constitutive relation, the strain at which local buckling initiates, εlb, is 

taken as a function of a measure of tube slenderness (Figure 3). The function was 

calibrated to experimental data found in the literature where initiation of local 

buckling was clearly identifiable or was noted by the author in the original reporting 

(Denavit and Hajjar 2012; Tort and Hajjar 2010a). This data is denoted in Figure 3 as 

the “calibration data” and is shown with grey markers. Comparable experimental data 

from the slender beam-column tests discussed in this paper (but not used in the 
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calibration of the steel constitutive relation) is denoted in Figure 3 as the “current 

data” and is shown with red markers. 

 
Figure 2. Steel Stress-Strain Relationship including Local Buckling 

Several means were employed in the determination of the first occurrence of local 

buckling in the slender beam-column tests. The most basic means of detecting local 

buckling was through visual inspection, though, this method was limited. Despite the 

numerous still and video cameras with different views and angles of the specimens 

employed during the tests, local buckling was often not visible until the buckles were 

severe. Safety concerns and time constraints limited the frequency that close 

observations, where the initiation of local buckling could be more reliability 

identified, could be made.  

 
Figure 3. Strain at Local Buckling Data 

Beyond the visual observations, two sets of instrumentation aided in identifying local 

buckling. A Krypton coordinate measurement machine was utilized to measure the 

three-dimensional location of LEDs placed on the specimen (visible in Figure 4a). 

Using this data, significant out-of-plane motion of one LED relative to the others 
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difference between the two sets of analysis results and both match the experimental 

results well. The results start to significantly diverge in the third load case (LC3a with 

axial compression = 3,559 kN). In this load case, under higher axial compression and 

biaxial loading, local buckling causes severe strength degradation. The state of the 

specimen at the conclusion of testing is shown in Figure 4b. The analysis with local 

buckling captures this behavior matching the results with good accuracy. The analysis 

without local buckling does not capture the strength degradation and yields a poor 

comparison. 

 
Figure 5. Comparison of Validation Results – Specimen 8-Rw-18-12 

PLASTIC HINGE LENGTH 

Regions of beams and columns that experience large inelastic curvatures when 

subjected to severe loading are designated plastic hinges. The inelasticity generally 

occurs in certain critical locations (e.g., the member ends for reverse curvature 

bending) and over a finite length, which is termed the plastic hinge length. The plastic 

hinge length has important implications for finite element analyses (Attalla et al. 

1994) as well as for design. Distributed plasticity models, such as the one adopted in 

this work, track inelasticity throughout the entire length of the element. For strain-

hardening sections, the plastic hinge length develops naturally and can be observed in 

analyses. However, for strain-softening sections, to maintain equilibrium, typically 

only one section in the element will follow the softening path, while the others simply 

unload elastically. The portion of the element over which the softening section is 

applicable is dependent on the numerical integration weight assigned to the section 

which depends on the number of sections. This causes a loss of objectivity and 
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computed results vary significantly based on the selected mesh density. This 

phenomenon is known as localization.  

Localization has been studied in the context of force based beam elements (Coleman 

and Spacone 2001; Scott and Fenves 2006; Scott and Hamutcuoglu 2008). Two 

general solutions have been proposed, the first is the alteration of the softening slope 

of the constitutive relations, and the second is to ensure that the numerical integration 

is performed such that the softening effects are distributed along the appropriate 

length of the member, i.e., the integration weight assigned to the section which 

softens represents the physical plastic hinge length.  

Scott and Hamutcuoglu (2008) present a specialized numerical integration scheme 

based on Lobatto quadrature but with the ability to prescribe the integration weights 

at the element ends. This approach, when implemented in the mixed beam element, 

performs very well for many cases, eliminating the mesh dependency associated with 

localization. However, the special numerical integration scheme can cause difficulty 

in obtaining convergent results. Alternatively, a simple approximate method of 

handling localization can be used whereby the mesh density (i.e., number of elements 

per member and number of integration points per element) is selected such that the 

integration weight implied by Lobatto quadrature of the critical integration point 

(section highest moment) is approximately equal to the physical plastic hinge length. 

This approach, however, has limitations. Aspects of the physical behavior such as the 

moment gradient must be known a priori and often a mesh cannot be selected such 

that the region of expected inelasticity is represented by a single integration point or 

even a single element. Nonetheless, with an estimation of the physical plastic hinge 

length and careful selection of the mesh density, accurate results can be obtained for a 

vast majority of practical cases.  

Instrumentation of the slender beam-column specimens, in particular the sets of strain 

gages placed longitudinally along the height of the column, allow for measurement of 

the curvature distribution from which the plastic hinge length can be estimated. The 

distribution of curvature within eight of the circular specimens is shown in Figure 6. 

These curvature distributions were obtained at the peak lateral displacement during 

one of the load cases. The selected load case was the last case in the load history that 

provided high curvatures and consistent strain gauge data. The strain data in some of 

the latter cases was not be reliable (mainly near the member bottom) due to saturated 

measurements or detached strain gauges as a consequence of excessive local 

buckling.  

The curvature distributions shown in Figure 6 follow the expected shape. The loading 

for these cases is that of a cantilever column with vertical and horizontal loads 

(Figure 7a), with an approximately triangular moment distribution (neglecting P-ǻ 

effects). Correspondingly, in the upper portion of the specimens, where the cross 

sections remained mostly elastic, the curvature distribution was approximately linear. 

Higher curvatures are noted in the lower portion of the specimen where the bending 

moment was the highest and the cross sections exhibited plastic deformations. From 

this experimental data, the plastic hinge length is roughly 20-30% of the column 

length. 
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The experimental data provides a good estimate of the plastic hinge length for the 

particular specimens investigated. However, the estimate is intended to be used to 

inform the finite element mesh density and a general analysis procedure is desired. 

Therefore, additional estimates are necessary for a wide range of cases. Additional 

estimates of the plastic hinge length can be made analytically through a nonlinear 

cross section analysis using the same fiber discretization used in the mixed beam 

finite elements. Examining a prototypical cantilever beam-column (Figure 7a), the 

plastic hinge length, Lp, may be approximated by Equation 1 (Lp normalized by the 

length from the point of maximum moment to the point of zero moment, Li). 

 1
p y

i u

L M

L M
= −  (1) 

To obtain the plastic hinge length using this expression, two values are required: the 

yield moment, My, and the ultimate moment, Mu. The ultimate moment has a 

relatively straightforward definition and can be obtained by identifying the peak 

moment from the moment-curvature response (Figure 7b). The yield moment, 

however, does not have an obvious definition, owing to the gradual transition to 

plasticity seen in the moment-curvature response. Prior studies have used different 

definitions to identify the yield moment. Elghazouli and Elnashai (1993) performed 

this type of study on partially encased composite columns and identified the yield 

moment as the moment at which the yield strain was reached in both the tensile and 

compressive extreme fibers. Bae and Bayrak (2008) performed this type of study on 

reinforced concrete columns and identified the yield moment as the moment at which 

the yield strain was reached in the compressive steel reinforcement.  

 
Figure 6. Experimental Curvature at Peak Lateral Displacement 

In this study, the yield moment is defined directly from the moment-curvature 

response using an offset methodology analogous to that used to define the offset yield 

stress from tensile coupon tests that do not exhibit a clear yield point. The yield 

moment is defined as the moment that corresponds to the point of intersection of the 

moment-curvature response and a line parallel to the initially linear portion of the 
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response. The slope of the parallel line is taken as the secant stiffness from zero 

moment to 45% of the ultimate moment. The offset is the distance between the origin 

of the moment-curvature response and the point of intersection of the parallel line and 

the zero moment axis. The offset is expressed in terms of curvature and is taken as 

0.001/D, where D is the overall section depth. This value was selected based on 

inspection of results from typical composite cross sections as the point at which the 

initiation of significant plastic deformations typically occurred. 

 
Figure 7. Schematic of Plastic Hinge Length Methodology and Results  
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The plastic hinge length obtained from this methodology will vary with the given 

cross section as well as the applied axial load. Thus, a parametric study was 

performed to document the variation of the plastic hinge length with material, 

geometric, and loading properties. Five circular HSS sections (HSS177.8×12.7, 

HSS254×12.7, HSS323.9×9.5, HSS406.4×6.4, and HSS609.6×3.2) were selected to 

span the range of permissible steel ratios and three concrete strengths (fƍc = 27.6, 55.2, 

and 110.3 MPa) were selected for a total of 15 circular CFT cross sections. Steel yield 

strength was taken as the typical nominal value (Fy = 290 MPa). A moment-curvature 

analysis was performed for each cross section and for compressive axial loads 

ranging from zero to 50% of the cross section capacity, Pno, identifying My and Mu for 

each analyses to determine Lp/Li. Results are shown in Figure 7c. The results show 

that the plastic hinge length varies with steel ratio, concrete strength and axial load. 

The greatest variations occur with axial load for the more concrete dominant sections. 

The analysis results match generally well with the experimental results which 

indicated a value of Lp/Li between 0.2 and 0.3. 

CONCLUSIONS 

Two aspects of the behavior of concrete filled steel tube beam columns were 

discussed. The aspects were highlighted in the context of both a set of experimental 

results and a nonlinear analysis formulation. Local buckling of the steel tube was 

identified as a cause of significant strength degradation and a challenging but crucial 

phenomenon to model. The plastic hinge length was identified as of key importance 

in mitigating the deleterious effects of localization. Estimates of the plastic hinge 

length, which may be used when selecting a finite element mesh, were made using 

both the experimental data and analysis results.  
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